@article {326, title = {A transcription factor affinity-based code for mammalian transcription initiation.}, journal = {Genome Res}, volume = {19}, year = {2009}, month = {2009 Apr}, pages = {644-56}, abstract = {

The recent arrival of large-scale cap analysis of gene expression (CAGE) data sets in mammals provides a wealth of quantitative information on coding and noncoding RNA polymerase II transcription start sites (TSS). Genome-wide CAGE studies reveal that a large fraction of TSS exhibit peaks where the vast majority of associated tags map to a particular location ( approximately 45\%), whereas other active regions contain a broader distribution of initiation events. The presence of a strong single peak suggests that transcription at these locations may be mediated by position-specific sequence features. We therefore propose a new model for single-peaked TSS based solely on known transcription factors (TFs) and their respective regions of positional enrichment. This probabilistic model leads to near-perfect classification results in cross-validation (auROC = 0.98), and performance in genomic scans demonstrates that TSS prediction with both high accuracy and spatial resolution is achievable for a specific but large subgroup of mammalian promoters. The interpretable model structure suggests a DNA code in which canonical sequence features such as TATA-box, Initiator, and GC content do play a significant role, but many additional TFs show distinct spatial biases with respect to TSS location and are important contributors to the accurate prediction of single-peak transcription initiation sites. The model structure also reveals that CAGE tag clusters distal from annotated gene starts have distinct characteristics compared to those close to gene 5\&$\#$39;-ends. Using this high-resolution single-peak model, we predict TSS for approximately 70\% of mammalian microRNAs based on currently available data.

[Links to Tools and Supplementary Materials]

}, keywords = {Base Composition, Databases, Genetic, DNA, Gene Expression Regulation, Genome, Human, Humans, Promoter Regions, Genetic, RNA Polymerase II, TATA Box, Transcription Factors, Transcription Initiation Site, Transcription, Genetic}, issn = {1088-9051}, doi = {10.1101/gr.085449.108}, author = {Megraw, Molly and Pereira, Fernando and Jensen, Shane T and Ohler, Uwe and Hatzigeorgiou, Artemis G} } @article {328, title = {Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer.}, journal = {Proc Natl Acad Sci U S A}, volume = {105}, year = {2008}, month = {2008 May 13}, pages = {7004-9}, abstract = {

MicroRNAs (miRNAs) are an abundant class of small noncoding RNAs that function as negative gene regulators. miRNA deregulation is involved in the initiation and progression of human cancer; however, the underlying mechanism and its contributions to genome-wide transcriptional changes in cancer are still largely unknown. We studied miRNA deregulation in human epithelial ovarian cancer by integrative genomic approach, including miRNA microarray (n = 106), array-based comparative genomic hybridization (n = 109), cDNA microarray (n = 76), and tissue array (n = 504). miRNA expression is markedly down-regulated in malignant transformation and tumor progression. Genomic copy number loss and epigenetic silencing, respectively, may account for the down-regulation of approximately 15\% and at least approximately 36\% of miRNAs in advanced ovarian tumors and miRNA down-regulation contributes to a genome-wide transcriptional deregulation. Last, eight miRNAs located in the chromosome 14 miRNA cluster (Dlk1-Gtl2 domain) were identified as potential tumor suppressor genes. Therefore, our results suggest that miRNAs may offer new biomarkers and therapeutic targets in epithelial ovarian cancer.

}, keywords = {DNA, Neoplasm, Down-Regulation, Epigenesis, Genetic, Epithelial Cells, Female, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Genome, Human, Humans, MicroRNAs, Neoplasm Staging, Ovarian Neoplasms, Ribonuclease III, RNA, Messenger, Survival Analysis}, issn = {1091-6490}, doi = {10.1073/pnas.0801615105}, author = {Zhang, Lin and Volinia, Stefano and Bonome, Tomas and Calin, George Adrian and Greshock, Joel and Yang, Nuo and Liu, Chang-Gong and Giannakakis, Antonis and Alexiou, Pangiotis and Hasegawa, Kosei and Johnstone, Cameron N and Megraw, Molly S and Adams, Sarah and Lassus, Heini and Huang, Jia and Kaur, Sippy and Liang, Shun and Sethupathy, Praveen and Leminen, Arto and Simossis, Victor A and Sandaltzopoulos, Raphael and Naomoto, Yoshio and Katsaros, Dionyssios and Gimotty, Phyllis A and DeMichele, Angela and Huang, Qihong and B{\"u}tzow, Ralf and Rustgi, Anil K and Weber, Barbara L and Birrer, Michael J and Hatzigeorgiou, Artemis G and Croce, Carlo M and Coukos, George} }